PRINCÍPIOS BÁSICOS DA TOMOGRAFIA COMPUTADORIZADA
PRINCÍPIOS FÍSICOS
A TC baseia-se nos mesmos princípios que a radiografia convencional, segundo os quais tecidos com diferente composição absorvem a radiação X de forma diferente. Ao serem atravessados por raios X, tecidos mais densos (como o fígado) ou com elementos mais pesados (como o cálcio), absorvem mais radiação que tecidos menos densos (como o pulmão, que está cheio de ar).
Assim, uma TC indica a quantidade de radiação absorvida por cada parte do corpo analisada (radiodensidade), e traduz essas variações numa escala de cinzentos, produzindo uma imagem. Cada pixel da imagem corresponde à média da absorção dos tecidos nessa zona, expresso em unidades de Hounsfield (em homenagem ao criador da primeira máquina de TC).
PROCEDIMENTO
Para obter uma TC, o paciente é colocado numa mesa que se desloca para o interior de um orifício de cerca de 70 cm de diâmetro. À volta deste encontra-se uma [[Ampola de Raios-X], num suporte circular designado gantry. Do lado oposto à ampola encontra-se o detector responsável por captar a radiação e transmitir essa informação ao computador ao qual está conectado.
Nas máquinas convencionais, durante o exame a “gantry” descreve uma volta completa (360º) em torno do paciente, com a ampola a emitir raios X que após atravessar o corpo do paciente são captados na outra extremidade pelo detector. Esses dados são então processados pelo computador, que analisa as variações de absorção ao longo da secção observada, e reconstrói esses dados sob a forma de uma imagem. A “mesa” avança então mais um pouco, repetindo-se o processo para obter uma nova imagem, alguns milímetros ou centímetros mais abaixo.
Máquinas mais recentes, designadas “helicoidais”, descrevem uma hélice em torno do corpo do paciente, em vez de uma sucessão de círculos completo. Desta forma é obtida informação de uma forma contínua, permitindo, dentro de certos limites, reconstruir imagens de qualquer secção analisada, não se limitando portanto aos "círculos" obtidos com as máquinas convencionais. Permitem também a utilização de doses menores de radiação, além de serem muito mais rápidas.
Godfrey Hounsfield é que desenvolveu esta técnica de obtenção de imagens em 1972. Na verdade os princípios físicos da tomografia computadorizada são os mesmos da radiografia convencional. Para a obtenção de imagens são utilizados os raios-x. Enquanto na radiografia convencional ou simples o feixe de raio-x é piramidal e a imagem obtida é uma imagem de projeção, na tomografia computadorizada o feixe é emitido por uma pequena fenda e tem a forma de leque.
Na tomografia computadorizada o tubo de raio-x gira 360 graus em torno da região do corpo a ser estudada e a imagem obtida é tomográfica ou seja “fatias” da região do corpo estudada são obtidas. Em oposição ao feixe de raios-x emitidos temos um detector de fótons que gira concomitantemente ao feixe de raios-x. Como na radiografia convencional as características das imagens vão depender dos fótons absorvidos pelo objeto em estudo.
Dessa forma, os fótons emitidos dependem da espessura do objeto e da capacidade deste de absorver os raios-x. Os detectores de fótons da tomografia computadorizada transformam os fótons emitidos em sinal analógico (quanto mais Rx chega, maior é a diferença de potencial, ou voltagem que cada detector fornece ao computador) e depois digital (o computador converte os valores de voltagem, contínuos, em unidades digitais, vistas abaixo).
Como dito anteriormente, para a formação da imagem de tomografia computadorizada a emissão do feixe de raio-x é feita em diversas posições, posteriormente as informações obtidas são processadas utilizando uma técnica matemática chamada de projeção retrógrada, ou outras, como a transformada de Fourier.
Um tomógrafo é formado por um tubo no interior do qual há um anel no qual estão localizados em posições opostas o emissor do feixe de raio-x e os detectores, sendo que este conjunto gira 360 graus para a obtenção da imagem.
Atualmente há vários tipos de tomógrafo: convencional ou simplesmente tomografia computadorizada, tomografia computadorizada helicoidal, tomografia computadorizada “multi-slice” e tomógrafos mais sofisticados, como “ultra-fast” e “cone-beam”. Na tomografia helicoidal além do tubo de raio-x e os detectores girarem, a mesa também é deslocada e a trajetória do feixe de Rx ao redor do corpo é uma hélice (ou espiral, senso lato).
CARACTERÍSTICAS DAS IMAGENS TOMOGRÁFICAS
Entre as características das imagens tomográficas destacam-se os pixeis, a matriz, o campo de visão (ou fov, “field of view”), a escala de cinza e as janelas. O pixel é o menor ponto da imagem que pode ser obtido. Assim uma imagem é formada por uma certa quantidade de pixeis. O conjunto de pixeis está distribuído em colunas e linhas que formam a matriz. Quanto maior o número de pixeis numa matriz melhor é a sua resolução espacial, o que permite um melhor diferenciação espacial entre as estruturas.
O campo de visão (FOV) representa o tamanho máximo do objeto em estudo que ocupa a matriz, por exemplo, uma matriz pode ter 512 pixeis em colunas e 512 pixeis em linhas, e se o campo de visão for de 12 cm, cada pixel vai representar cerca de 0,023 cm (12 cm/512). Assim para o estudo de estruturas delicadas como o ouvido interno o campo de visão é pequeno, como visto acima enquanto para o estudo do abdômen o campo de visão é maior, 50 cm (se tiver uma matriz de 512 x 512, então o tamanho da região que cada pixel representa vai ser cerca de quatro vezes maior, ou próximo de 1 mm).
Em relação às imagens, existe uma convenção para traduzir os valores de voltagem detectados em unidades digitais. Dessa forma, temos valores que variam de –1000, onde nenhuma voltagem é detectada: o objeto não absorveu praticamente nenhum dos fótons de Rx, e se comporta como o ar; ou um valor muito alto, algo como +1000 ou mais, caso poucos fótons cheguem ao detector: o objeto absorveu quase todos os fótons de RX. Essa escala onde –1000 é mais escuro, 0 é um cinza médio e +1000 (ou mais) é bem claro. Dessa forma quanto mais Rx o objeto absorver, mais claro ele é na imagem. Outra vantagem é que esses valores são ajustados de acordo com os tecidos biológicos.
A escala de cinza é formada por um grande espectro de representações de tonalidades entre branco, cinza e o preto. A escala de cinzas é que é responsável pelo brilho de imagem. Uma escala de cinzas foi criada especialmente para a tomografia computadorizada e sua unidade foi chamada de unidade Hounsfield (HU), em homenagem ao cientista que desenvolveu a tomografia computadorizada. Nesta escala temos o seguinte:
• zero unidades Housfield (0 HU) é a água,
• ar -1000 (HU),
• osso de 300 a 350 HU;
• gordura de –120 a -80 HU;
• músculo de 50 a 55 HU.
As janelas são recursos computacionais que permitem que após a obtenção das imagens a escala de cinzas possa ser estreitada facilitando a diferenciação entre certas estruturas conforme a necessidade. Isto porque o olho humano tem a capacidade de diferenciar uma escala de cinzas de 10 a 60 tons (a maioria das pessoas distingue 20 diferentes tons), enquanto na tomografia no mínimo, como visto acima há 2000 tons. Entretanto, podem ser obtidos até 65536 tons – o que seria inútil se tivéssemos que apresentá-los ao mesmo tempo na imagem, já que não poderíamos distingui-los. A janela é na verdade uma forma de mostrar apenas uma faixa de tons de cinza que nos interessa, de forma a adaptar a nossa capacidade de visão aos dados obtidos pelo tomógrafo.
Numa janela define-se a abertura da mesma ou seja qual será o número máximo de tons de cinza entre o valor numérico em HU do branco e qual será o do preto. O nível é definido como o valor (em HU) da média da janela.
O uso de diferentes janelas em tomografia permite por exemplo o estudo dos ossos com distinção entre a cortical e a medular óssea ou o estudo de partes moles com a distinção, por exemplo, no cérebro entre a substância branca e a cinzenta. A mesma imagem pode ser mostrada com diferentes ajustes da janela, de modo a mostrar diferentes estruturas de cada vez. Não é possível usar um só ajuste da janela para ver, por exemplo, detalhes ósseos e de tecido adiposo ao mesmo tempo.
As imagens tomográficas podem ser obtidas em dois planos básicos: o plano axial (perpendicular ao maior eixo do corpo) e o plano coronal (paralelo a sutura coronal do crânio ou seja é uma visão frontal). Após obtidas as imagens, recursos computacionais podem permitir reconstruções no plano sagital (paralelo a sutura sagital do crânio) ou reconstruções tri-dimensionais.
Como na radiografia convencional o que está sendo analisado são diferenças de densidade, que podem ser medidas em unidades Hounsfield.
Para descrever diferenças de densidades entre dois tecidos é utilizada uma nomenclatura semelhante à utilizada na ultrassonografia: isoatenuante, hipoatenuante ou hiperatenuante. Isoatenuante é utilizada para atenuações tomográficas semelhantes. Hipoatenuantes para atenuações menores do que o tecido considerado padrão e hiperatenuante para atenuações maiores que o tecido padrão (geralmente o órgão que contém a lesão é considerado o tecido padrão, ou quando isto não se aplica, o centro da janela é considerado isoatenuante).
VANTAGENS e DESVANTAGENS
VANTAGENS
A principal vantagem da TC é que permite o estudo de "fatias" ou secções transversais do corpo humano vivo, ao contrário do que é dado pela radiologia convencional, que consiste na representação de todas as estruturas do corpo sobrepostas. É assim obtida uma imagem em que a percepção espacial é mais nítida.
Outra vantagem consiste na maior distinção entre dois tecidos. A TC permite distinguir diferenças de densidade da ordem 0,5% entre tecidos, ao passo que na radiologia convencional este limiar situa-se nos 5%.
Desta forma, é possível a detecção ou o estudo de anomalias que não seria possível senão através de métodos invasivos, sendo assim um exame complementar de diagnóstico de grande valor.
DESVANTAGENS
Uma das principais desvantagens da TC é devida ao facto de utilizar radiação X. Esta tem um efeito negativo sobre o corpo humano, sobretudo pela capacidade de causar mutações genéticas, visível sobretudo em células que se estejam a multiplicar rapidamente. Embora o risco de se desenvolverem anomalias seja baixo, é desaconselhada a realização de TCs em grávidas e em crianças, devendo ser ponderado co
m cuidado os riscos e os benefícios.
Uma outra da desvantagem da TC é o seu elevado preço, especialmente quando comparada com outros métodos como a radiografia convencional ou mesmo a ecografia.
Fonte: Radiologistas, te vemos por dentro.